86 research outputs found

    Calibration and Validation of A Shared space Model: A Case Study

    Get PDF
    Shared space is an innovative streetscape design that seeks minimum separation between vehicle traffic and pedestrians. Urban design is moving toward space sharing as a means of increasing the community texture of street surroundings. Its unique features aim to balance priorities and allow cars and pedestrians to coexist harmoniously without the need to dictate behavior. There is, however, a need for a simulation tool to model future shared space schemes and to help judge whether they might represent suitable alternatives to traditional street layouts. This paper builds on the authors’ previously published work in which a shared space microscopic mixed traffic model based on the social force model (SFM) was presented, calibrated, and evaluated with data from the shared space link typology of New Road in Brighton, United Kingdom. Here, the goal is to explore the transferability of the authors’ model to a similar shared space typology and investigate the effect of flow and ratio of traffic modes. Data recorded from the shared space scheme of Exhibition Road, London, were collected and analyzed. The flow and speed of cars and segregation between pedestrians and cars are greater on Exhibition Road than on New Road. The rule-based SFM for shared space modeling is calibrated and validated with the real data. On the basis of the results, it can be concluded that shared space schemes are context dependent and that factors such as the infrastructural design of the environment and the flow and speed of pedestrians and vehicles affect the willingness to share space

    Modelling shared space users via rule-based social force model

    Get PDF
    The promotion of space sharing in order to raise the quality of community living and safety of street surroundings is increasingly accepted feature of modern urban design. In this context, the development of a shared space simulation tool is essential in helping determine whether particular shared space schemes are suitable alternatives to traditional street layouts. A simulation tool that enables urban designers to visualise pedestrians and cars trajectories, extract flow and density relation in a new shared space design and achieve solutions for optimal design features before implementation. This paper presents a three-layered microscopic mathematical model which is capable of representing the behaviour of pedestrians and vehicles in shared space layouts and it is implemented in a traffic simulation tool. The top layer calculates route maps based on static obstacles in the environment. It plans the shortest path towards agents' respective destinations by generating one or more intermediate targets. In the second layer, the Social Force Model (SFM) is modified and extended for mixed traffic to produce feasible trajectories. Since vehicle movements are not as flexible as pedestrian movements, velocity angle constraints are included for vehicles. The conflicts described in the third layer are resolved by rule-based constraints for shared space users. An optimisation algorithm is applied to determine the interaction parameters of the force-based model for shared space users using empirical data. This new three-layer microscopic model can be used to simulate shared space environments and assess, for example, new street designs

    Minimum energy route optimisation of a quad-copter UAV with landing incentivisation

    Get PDF
    Recent advancements in the technology surrounding UAVs have expanded the possibility of incorporating them into current logistical solutions. In order to accurately assess their capabilities, it is important that minimum energy trajectories can be generated to increase the travel range of a UAV as well as its possible number of visited locations. However, in current formulations of the optimisation problem, UAV dynamics do not incorporate a contact force on the ground. This results in hover-to-hover trajectories where the duration of the journey is exactly equal to an arrival time which is set as one of the problem's parameters. Those solutions are likely to be energetically sub-optimal if an unnecessarily large value of arrival time is chosen. This paper introduces landing capability by modifying gravitational acceleration in the dynamics using a sigmoid function which approaches zero at the destination. In this way, the trip can be conducted in a shorter amount of time if it results in lower energy consumption. The new model is compared against an example from the literature, where the corresponding solution results in a reduction of the travel time and energy consumption by approximately 80%. It is also applied to a real-world example where it is demonstrated that a UAV can provide energy savings if it replaces a van completing a delivery in the Solent region of the UK

    Modelling the impact of liner shipping network perturbations on container cargo routing: Southeast Asia to Europe application

    Get PDF
    Understanding how container routing stands to be impacted by different scenarios of liner shipping network perturbations such as natural disasters or new major infrastructure developments is of key importance for decision-making in the liner shipping industry. The variety of actors and processes within modern supply chains and the complexity of their relationships have previously led to the development of simulation-based models, whose application has been largely compromised by their dependency on extensive and often confidential sets of data. This study proposes the application of optimisation techniques less dependent on complex data sets in order to develop a quantitative framework to assess the impacts of disruptive events on liner shipping networks. We provide a categorization of liner network perturbations, differentiating between systemic and external and formulate a container assignment model that minimises routing costs extending previous implementations to allow feasible solutions when routing capacity is reduced below transport demand. We develop a base case network for the Southeast Asia to Europe liner shipping trade and review of accidents related to port disruptions for two scenarios of seismic and political conflict hazards. Numerical results identify alternative routing paths and costs in the aftermath of port disruptions scenarios and suggest higher vulnerability of intra-regional connectivity

    Estimating path flows from traffic counts

    No full text

    The measurement of reliability in stochastic transport networks

    No full text
    • …
    corecore